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The ubiquity of graph-shaped data

Graph databases are everywhere
massive search engines, e-commerce (Google, Yahoo!, Microsoft)
social networks (e.g., LinkedIn, Facebook, Twitter)
knowledge graphs (e.g., DBPedia, citation networks)
experimental data, numerical simulations
...

E.g. Facebook has 1.39B active users as of 12/2014 with more than 400B
edges Ching, Avery, et al. "One trillion edges: Graph processing at facebook-scale."

Proceedings of the VLDB Endowment 8.12 (2015): 1804-1815.
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The ubiquity of graph-shaped data

Analytics on graph databases increasingly important
data mining on integrated graph data
role discovery in social networks
searching related literature in a citation network
inspecting large-scale scientific datasets
...
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Graph queries as building blocks

Graph Analytics = graph mining algorithms + exploratory graph queries

A [N]ew paradigm shift is set forth for graph query languages due
to their navigational capabilities

P. Barcelo (PODS, 2013)
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Navigational properties needed in graph query languages

Classical query languages, such as SQL(1) and Datalog(2), are not suitable
due to (1) their limited recursion and (2) their higher data complexity.
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Basic Ingredients: Graph Databases and Queries



Graph databases

db-graph
A db-graph is an edge-labeled graph G “ pV , Σ,E q

V is the set of vertices;
Σ is the set of labels;
E Ď V ˆ Σˆ V is the set of edges.

v1 v2 v3

v4 v5 v6

a b

a b
a

bb

a

a

a
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Edge-labeled Paths

An edge-labeled path is a sequence pv1, a1, . . . ak , vk`1q with
pvi , ai , vi`1q P E for every i P t1, . . . , ku.
The label of a path is the word formed by its edge labels.

Example:

v1 v2 v3

v4 v5 v6

a b

a b
a

bb

a

a

a

p1 “ pv1, a, v4, a, v5, b, v2q is a path from v1 to v2 with label aab;
p2 “ pv1, a, v5, a, v1, a, v2q is a path from v1 to v2 with label aaa.
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Regular Path Queries

A regular path query (RPQ) over the set of edge labels Σ is expressed
as a regular expression over Σ.
The answer QpDq to an RPQ Q over a database D is the set of pairs
of nodes connected in D by a directed path traversing a sequence of
edges forming a word in the regular language LpQq defined by Q.

Example:

v1 v2 v3

v4 v5 v6

a b

a b
a

bb

a

a

a

Q “ b˚ is an RPQ returning the pairs of nodes pv2, v3q, pv4, v2q, pv4, v3q, pv4, v5q,
pv5, v2q, pv5, v3q, pv6, v2q, pv6, v3q, pv6, v5q.
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A query language for graphs

UCRPQ: Unions of Conjunctions of Regular Path Queries
– Core constructs of the W3C’s SPARQL 1.1, Oracle’s PGQL, and and
Neo4j’s openCypher
– Well understood theoretical properties (e.g., polynomial data complexity)

UCRPQ includes recursive queries (via the Kleene star ˚), with
applications in social networks, bioinformatics, etc.
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A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities (i.e., genes
and organisms) relevant to proteins studied in papers authored by
people in the researcher’s coauthorship network
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A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities (i.e., genes
and organisms) relevant to proteins studied in papers authored by
people in the researcher’s coauthorship network

p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

(a=authoredBy, r=referencedBy, e=encodedOn, o=occursIn)
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Graph queries, from generation to learning

Over the past few years, we have been investigating the ways in which:
graph queries can be generated, evaluated and inferred.

This talk surveys this work, which is the result of collaborations with my
colleagues at CNRS Liris, Eindhoven University of Technology, Université
Clermont Auvergne, Université Paris Sud, and Université Lille 3.
Full bibliographic details can be found on the last slides and in the abstract
accompanying the talk.
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Graph queries, from generation to learning

part 1: gMark for schema-driven generation of graph instances and
queries

part 2: complexity of evaluation of simple regular path queries

part 3: user-driven inference of regular path queries
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Synthetic graph and workload generation with gMark

We present gMark, an open-source framework for generation of synthetic
graphs and workloads.

gMark generates UCRPQÑ the first synthetic workload generator to
support recursive queries (and their generation in concrete syntaxes).

gMark has been designed to tailor diverse graph data management
scenarios, which are often driven by query workloads, such as multi-query
optimization, data integration and database physical design.
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Synthetic graph and workload generation with gMark

Given a graph schema, gMark
generates synthetic instances of the schema (of desired size)
generates query workloads with targeted structure and runtime
behavior (which holds for all instances of the schema)
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Why gMark?

We adopt successful aspects of the state of the art

For example, like the Waterloo Diversity Benchmark (ISWC 2014), gMark
is schema-driven,

allowing finely tailored graph instances for specific application
domains; and,
allowing tightly controlled generation of query workloads.

and, like the LDBC SNB Interactive (SIGMOD 2015), gMark supports
focused stress-testing of query optimization choke-points, through fine
control of query parameters such as selectivities.
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Why gMark?

New features of gMark include
support for flexible generation of query workloads including recursive
path queries, which are fundamental for graph analytics;

and,

query selectivity estimation solution, in a purely instance-independent
schema-driven fashion.

§ hence, more scalable, more predictable, and easier to
explain/understand.

Neither of these are supported in WatDiv and LDBC.
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Overview of the gMark workflow

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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Graph generation



gMark graph generation

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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Graph configurations

The user can specify in the graph configuration (i.e., graph schema):

‚ Size: # of nodes
‚ Node types: finite set of node labels

e.g., author, citation, journal

‚ Edge predicates: finite set of edge labels
e.g., authoredBy, referencedBy

‚ Schema constraints: proportion of nodes/edges of given type
e.g., 20% of all nodes are authors

‚ Degree distributions: on the in- and out-degree of edge predicates
(uniform, normal, zipfian)

e.g., the out-distribution of citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author is Gaussian
with parameters µ “ 3,σ “ 1
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Graph configurations: Uniprot schema

Node type Constr.
gene 35%
protein 31%
author 20%
citation 10%
organism 1%
. . . . . .

Edge predicate Constr.
authoredBy 64%
encodedOn 6%
referencedBy 3%
occursIn 2%
. . . . . .

Node types Edge predicates

source type predicate
ÝÝÝÝÝÝÑ

target type In-distr. Out-distr.

protein encodedOn
ÝÝÝÝÝÝÝÑ

gene Zipfian Gaussian
protein occursIn

ÝÝÝÝÝÝÑ
organism Zipfian Uniform

protein referencedBy
ÝÝÝÝÝÝÝÝÝÝÑ

citation Zipfian Gaussian

citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author Zipfian Gaussian

. . . . . . . . .
In- and out-degree distributions
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Schema-driven graph generation

We have established the intractability of the generation problem

Theorem
Given a graph configuration G , deciding whether or not there exists a
graph instance satisfying G is NP-complete.

Hence, gMark follows an heuristic approach in instance generation (Opnq),
i.e., it attempts to achieve the exact values of the input parameters and
relaxes them whenever this is not possible.
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Schema-driven graph generation

We have adapted the scenarios of several popular use cases into meaningful
gMark configurations, while also adding new gMark features:

Bib: our default bibliographical use-case
LSN: LDBC social network benchmark
WD: WatDiv e-commerce benchmark
SP: SP2Bench DBLP benchmark
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Scalability of gMark graph generation

100K 1M 10M 100M
Bib 0m0.057s 0m0.638s 0m8.344s 1m28.725s
LSN 0m0.225s 0m1.451s 0m23.018s 3m11.318s
WD 0m2.163s 0m25.032s 4m10.988s 113m31.078s
SP 0m0.638s 0m7.048s 1m28.831s 15m23.542s

Graph generation times, with varying graph sizes (# nodes)

Generation time depends heavily on density of instances (e.g., WD has 100x
number of edges than Bib)
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Query workload generation



gMark query generation

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities (i.e., genes
and organisms) relevant to proteins studied in papers authored by
people in the researcher’s coauthorship network

p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

(a=authoredBy, r=referencedBy, e=encodedOn, o=occursIn)

#rules 1
#conjuncts 2
#disjuncts 1, 2
path lengh 2, 3, 3
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Schema-driven workload generation

The user can specify in the query workload configuration:

‚ Size: #queries, #conjuncts/#disjuncts/path length per query

‚ Selectivity: constant, linear, quadratic.

‚ Recursion: probability to generate Kleene star above a conjunct.

‚ Shape: chain, star, cycle, star-chain.

‚ Arity: arbitrary (including 0 i.e., Boolean).

The graph configuration is also input to the query generator.
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gMark query translator

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog
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Query translation

UCRPQ: p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

SPARQL openCypher

PREFIX : <http://example.org/gmark/>
SELECT DISTINCT ?x ?z
WHERE { ?x (^:a/:a)* ?y .
?y ((^:a/^:r/:e)|(^:a/^:r/:o)) ?z .}

MATCH (x)<-[:a]-()-[:a]->(y),
(y)<-[:a]-()<-[:r]-()-[:e]->(z)
RETURN DISTINCT x, z
UNION
MATCH (x)<-[:a]-()-[:a]->(y),
(y)<-[:a]-()<-[:r]-()-[:o]->(z)
RETURN DISTINCT x, z;

Datalog SQL
g0(x,y)<- edge(x1,a,x0),edge(x1,a,x2),

x=x0,y=x2.
g0(x,y)<- g0(x,z),g0(z,y).
g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,e,x3),x=x0,y=x3.
g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,o,x3),x=x0,y=x3.
query(x,z)<- g0(x,y),g1(y,z).

WITH RECURSIVE c0(src, trg) AS (
SELECT edge.src, edge.src FROM edge
UNION
SELECT edge.trg, edge.trg FROM edge
UNION
SELECT s0.src, s0.trg
FROM (SELECT trg as src, src as trg,
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Scalability of gMark workload generation

On my laptop, gMark easily generates workloads of one thousand queries
for Bib in „ 0.3s; LSN and SP in „ 1.5s; and for the richer WD scenario in
„ 10s.

Query translation of the thousand queries into all four supported syntaxes
for each of the four scenarios required „ 0.1s.
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Scalability on recursive query workloads

Example Application. We performed an extensive performance study of
four state-of-the-art systems under the four use-case schemas.

Our main finding was that performance on queries containing recursive
path navigation (i.e., RPQs) was typically impractical

indicates the need for further study of the engineering of this basic
class of graph queries
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part 1: Conclusions and future work



Recap

Novel contributions of gMark
schema-driven graph and query-workload generation, featuring
instance-independent selectivity estimation;
finely controlled query workload-centered approach

§ versus query-centered approaches – nb. both are valid and needed!
discovery of the performance difficulties of existing graph DBMS’s on
evaluating a basic class of graph queries

§ Regular Path Queries

https://github.com/graphMark/gmark
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Looking ahead to gMark v2.0

Extensions/Wishlist.
properties of the generation

§ stability of nodes across the generation process1

richer queries
§ support of constants in queries
§ additional query shapes
§ extensions of selectivity estimation to higher arity queries,

richer schemas
§ configuration parameter completion,
§ schema constructs for correlated structure

1Come to our EDBT17 poster session: W. van Leeuwen, A. Bonifati, G. Fletcher,
and N. Yakovets. Stability notions in synthetic graph generation: a preliminary study.

GraphQ 2017 Angela Bonifati



Looking ahead to gMark v2.0

Extensions/Wishlist.
properties of the generation

§ stability of nodes across the generation process1

richer queries
§ support of constants in queries
§ additional query shapes
§ extensions of selectivity estimation to higher arity queries,

richer schemas
§ configuration parameter completion,
§ schema constructs for correlated structure

1Come to our EDBT17 poster session: W. van Leeuwen, A. Bonifati, G. Fletcher,
and N. Yakovets. Stability notions in synthetic graph generation: a preliminary study.

GraphQ 2017 Angela Bonifati



Looking ahead to gMark v2.0

Extensions/Wishlist.
properties of the generation

§ stability of nodes across the generation process1

richer queries
§ support of constants in queries
§ additional query shapes
§ extensions of selectivity estimation to higher arity queries,

richer schemas
§ configuration parameter completion,
§ schema constructs for correlated structure

1Come to our EDBT17 poster session: W. van Leeuwen, A. Bonifati, G. Fletcher,
and N. Yakovets. Stability notions in synthetic graph generation: a preliminary study.

GraphQ 2017 Angela Bonifati



Graph queries, from generation to learning

part 1: gMark for schema-driven generation of graph instances and
queries

part 2: complexity of evaluation of simple regular path queries
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Paths

A path is a sequence pv1, a1, . . . ak , vk`1q with pvi , ai , vi`1q P E for
every i P t1, . . . , ku.
A path is simple if it does not contain cycles (repetitions of vertices).
The label of a path is the word formed by its edge labels.
An L-labeled path is a path whose label belongs to L.

Example:

v1 v2 v3

v4 v5 v6

a b

a b
a

bb

a

a

a

p1 “ pv1, a, v4, a, v5, b, v2q is a simple path from v1 to v2 with label aab;
p2 “ pv1, a, v5, a, v1, a, v2q is a (non simple) path from v1 to v2 with label aaa.
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every i P t1, . . . , ku.
A path is simple if it does not contain cycles (repetitions of vertices).
The label of a path is the word formed by its edge labels.
An L-labeled path is a path whose label belongs to L.

Example:

v1 v2 v3

v4 v5 v6

a b

a b
a

bb

a

a

a

p1 “ pv1, a, v4, a, v5, b, v2q is a simple path from v1 to v2 with label aab;
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Regular path queries

RPQpLq

A db-graph G , two nodes x and y

Is there an L-labeled path from x to y?

RSPQpLq

A db-graph G , two nodes x and y

Is there an L-labeled simple path from x to y?
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Applications of RSPQ

Sparql [Losemann and Martens 2012, Arenas et al 2012]
Semantic web
Biological networks
Wireless networks
Transportation problems
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Complexity [Mendelzon and Wood 95]

RPQpLq is polynomial for combined complexity (both in the size of the
graph and the regular expression);
RSPQpLq is NP-complete for data complexity.

§ For example, if we fix L “ a˚ba˚ or L “ paaq˚.
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Results already known

RSPQpLq is polynomial (combined complexity):
when L is closed by subwords [Mendelzon and Wood 95];
over acyclic graphs [Mendelzon and Wood 95];
over outerplanar graphs [Nedev and Wood 2000];
over bounded treewidth graphs [Barrett et al 2000];
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Our goal

Question
For which languages L, RSPQpLq is tractable?
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Our main result

Theorem (Main theorem)
Let L be a regular language. Then:

RSPQpLq is polynomial if L P Ctract ;
RSPQpLq is NP-complete if L R Ctract .

Theorem (Refinement)
Let L be a regular language. Then:

RSPQpLq is AC0 if L is finite;
RSPQpLq is NL-complete if L P Ctract and L is infinite;
RSPQpLq is NP-complete if L R Ctract .

AC0 Ď L Ď NL Ď P Ď NP Ď PSPACE.
AC0: definable by a first-order formula.
NL: non deterministic logspace.
NP: non deterministic polynomial time.
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Ctract

Definition
A regular language belongs to Ctract if there is a constant M such that for
every words wl ,w1,wm,w2,wr (w1,w2 non empty), it holds

wlw
M
1 wmw

M
2 wr P Lñ wlw

M
1 wM

2 wr P L

Examples of languages not in Ctract :
L “ a˚bc˚:
aMbcM P L and aMcM R L.
L “ paaq˚:
apaaqMapaaqM P L and apaaqMpaaqM R L

L “ twords with no occurrence of aau:
pbaqMbpabqM P L and pbaqMpabqM R L.

GraphQ 2017 Angela Bonifati



Alternative characterization

Definition by regular expressions
Ctract is the class of languages definable by Ψtr -expressions.

Ψtr -terms:
§ w ` ε for w P Σ˚.
§ Aěk ` ε for A Ď Σ.

Ψtr -sequence: concatenation of a sequence of terms. The first and
last vertices of the sequence are words and the others are Ψtr -terms;
Ψtr -expression: disjunction of Ψtr -sequences.

Example
L “ abb˚pab ` εqa˚ab

L “ abpa˚pa` cq˚ ` d ` εqpaaa˚ ` εqb

GraphQ 2017 Angela Bonifati



part 2: Conclusions and future work



Concluding remarks and perspectives

We have charted the tractability frontier of RSPQ.
A future direction is devoted to:

§ generalize the classification to context-free languages (CFL) for which
RSPQpLq is tractable: tanbm|n ‰ mu.

§ consider special classes of graphs like planar digraphs.
§ does it exist a trichotomy for RPQ: AC0, L-complete, NL-complete ?
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Graph queries, from generation to learning

part 1: gMark for schema-driven generation of graph instances and
queries

part 2: complexity of evaluation of simple regular path queries

part 3: user-driven inference of regular path queries
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Motivation

Specifying a database query is a challenging task for non-expert users
§ Unfamiliar with language formalisms

In the context of graph databases, the problem becomes even harder:
§ There is no clear distinction between instances and schemas.
§ The instances do not carry proper metadata.
§ The instances are usually of large size and difficult to visualize.

Traditional query specification paradigms for non-expert users e.g.,
query by example2 become unfeasible.

2Zloof. Query by example. AFIPS’75.
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Regular Path queries on graph databases

We focus on regular path queries (pq) that select nodes having at
least one path in the language of a given regular expression
Example: “select neighborhoods from which one can reach a cinema
via public transportation”

ptram ` busq˚ ¨ cinema

N1 tram
ÝÝÝÑ

N4 cinema
ÝÝÝÝÝÑ

C1

N2 bus
ÝÝÑ

N1 tram
ÝÝÝÑ

N4 cinema
ÝÝÝÝÝÑ

C1

N4 cinema
ÝÝÝÝÝÑ

C1

N6 cinema
ÝÝÝÝÝÑ

C2

N1 N2 N3

N4 N5 N6

C1 R1 R2 C2

bustram

bus bus

cinema

tram

restaurant

bus tram

restaurant

tram

bus

cinema
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Learning path queries on graph databases

Input: positive and negative node examples
Output: the query that “the user has in mind”

Consistent queries:

ptram ` busq˚ ¨ cinema
bus
...

N1 N2 N3

N4 N5 N6

C1 R1 R2 C2

bustram

bus bus

cinema

tram

restaurant

bus tram

restaurant

tram

bus

cinema
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Contributions

Learning from a set of examples (a fixed set of examples is given)
General framework for learning path queries
Intractability of consistency checking (even for restricted classes)
Learnability (with abstain) of pq

Learning from user interactions (the algorithm interacts with the user)
Characterization of what means for a node to be informative
Practical strategies of presenting nodes to the user

Experimental evaluation of our algorithms
Real biological and synthetic datasets
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Learning from a set of examples



Learning with polynomial time and data

Ideally, we would like a Gold3-style learning algorithm:
Polynomial
Sound – return a consistent query or null if no such query exists
Complete – able to learn any query from its characteristic sample

Problem:
Intractability of consistency checking

§ PSPACE-complete for general pq
§ NP-complete for restrictions (queries of the form a1 ¨ . . . ¨ an)

Proof techniques from definability problems4 (binary semantics)

3E. M. Gold. Complexity of automaton identification from given data. Information
and Control, 1978.

4T. Antonopoulos, F. Neven, and F. Servais. Definability problems for graph query
languages. ICDT, 2013.
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Learning model with abstain

Learning with polynomial time and data
Polynomial
Sound – return a consistent query or null if no such query exists
Complete – able to learn any query from its characteristic sample

Learning model with abstain
Always return in polynomial time
If a consistent query cannot be efficiently constructed, the algorithm
abstains from answering
If a polynomial characteristic sample is provided, the learning
algorithm is guaranteed to return the goal query
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Learning algorithm

Idea
for each positive node select the path that “made the user label it”
construct the disjunction of such paths
generalize consistently with the examples

Step 1 – Selecting smallest consistent paths (SCPs)
for each positive node select its smallest consistent path (SCP)

ν1 – abc

ν3 – c

ν1 ν2 ν3 ν4

ν5ν6ν7

a

b

a

b

a

a
b
c

a b cc

aa

b
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b
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Learning algorithm

Step 2 – Generalizing SCPs by state merges à la RPNI5

ν1 – abc

ν3 – c

ν1 ν2 ν3 ν4

ν5ν6ν7

a

b

a

b

a

a
b
c

a b cc

aa

b

εstart

a ab abc

c

a
b c

c εstart

a

c

a

b
c

5J. Oncina and P. García. Inferring regular languages in polynomial update time.
Pattern Recognition and Image Analysis, 1992.
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Bound the length of SCPs

Problem 1 – Inconsistent sample
we may enumerate an infinite set of
paths and never halt

+– –a b

a b

Problem 2 – Very long SCPs
Goal query: a˚ ¨ b

SCPs: b, ab, aa . . . ab

++ –a b

a

+ . . .a a b

Learning algorithm
1 select SCPs shorter than a fixed parameter k if they exist
2 generalize SCPs
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Learnability result

Choosing the good k

Let P` be the set of paths to be selected in an input sample, the
parameter k should be ě than the longest path in P`.
The longest path in P` is bounded by 2ˆ n ` 1 (where n is the
number of states in the canonical DFA of the goal)a.
Let pqďn the path queries with canonical DFAs of at most n states.

aJ. Oncina and P. García. Inferring regular languages in polynomial update
time. Pattern Recognition and Image Analysis, 1992.

Theorem
pqďn are learnable (with abstain in polynomial time and data) using the
learning algorithm with k set to 2ˆ n ` 1.
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Learning from user interactions



Learning from user interactions

Algorithm
start with an empty sample
while there are informative nodes left

choose a node according to a strategy
ask the user to label the chosen node
learn a query q
if the user is satisfied by the output of q

return q

Problems
What means for a node to be informative?
What is a good strategy of presenting nodes to the user?
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Informative and uninformative nodes

A node is uninformative with a label if labeling it otherwise leads to an
inconsistent sample.

Uninformative with + Uninformative with –

+– ?
a b

a b

?– –a b

a b

Informative nodes Informative nodes

+? ?
a b

a b

?– ?
a b

a b

Complexity
Deciding whether a node is informative is PSPACE-complete.
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Practical strategies

Idea
Look at k-paths – paths of nodes of length bounded by k

A node is k-uninformative if all its k-paths are covered by negatives
no Ñ the node is informative and becomes a candidate next node
yes Ñ the current k does not permit to decide the informativeness

Strategies
1 A randomly chosen k-informative node (kR)
2 The node with the smallest number of non-covered k-paths (kS)
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Setup of experiments

Datasets
Biological datasets

§ Biological graph of « 3k nodes, 6 queries from biological research
Synthetic datasets

§ Generate scale-free graphs (as Internet, social and biological graphs)
§ Varying sizes: 10k , 20k , 30k

Experimental settings
Static experiments

§ Take randomly some nodes, label them, and run algorithm on them
§ Measure the F1 score and the learning time (s)

Interactive experiments
§ Start with an empty set of examples
§ Measure the number of examples (+/–) and the time necessary for
F1 score 1.
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Summary of static experiments
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Summary of static experiments
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Summary of interactive experiments

Bio query
/

Graph size

Labels needed for
F1 score = 1

without interactions

Interactive
strategy

Labels needed for
F1 score = 1

with interactions

Time between
interactions
(seconds)

Dataset

Bio
queries

bio1 7% kR 0.06% 0.19
kS 0.06% 0.33

bio2 7% kR 1.78% 0.26
kS 3.13% 0.48

bio3 66% kR 1.24% 0.34
kS 1.49% 0.45

bio4 12% kR 1.32% 0.23
kS 0.22% 0.53

bio5 87% kR 7.7% 3.45
kS 7.39% 3.79

bio6 12% kR 1.18% 0.24
kS 0.35% 0.3

Synt. query
syn1

10000 51% kR 0.15% 1.33
kS 0.17% 1.35

20000 26% kR 0.07% 5.83
kS 0.06% 5.92

30000 22% kR 0.04% 13.5
kS 0.04% 13.95

Synt. query
syn2

10000 20% kR 0.38% 1.57
kS 0.36% 1.58

20000 11% kR 0.23% 6.63
kS 0.22% 6.78

30000 8% kR 0.17% 15.24
kS 0.16% 15.38
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part 3: Conclusions and future work



Conclusions

We studied the problem of learning path queries on graphs:

§ Static – a fixed set of examples is given
‹ General framework for learning pq
‹ Intractability of consistency checking
‹ Learnability (with abstain) of pq

§ Interactive – the algorithm interacts with the user
‹ Characterization of the “informativeness” of a node
‹ Practical strategies of presenting nodes to the user

We have validated experimentally our algorithms
§ Real biological graph
§ Synthetic datasets
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Future work

Sample the initial graph and learn on a representative subgraph

Evaluate our approach for n-ary queries

Explore new measures of informativeness
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Results

Schema-driven generation of graph instances and queries (PVLDB16,
ICDE17, TKDE17, EDBT17) [Bagan et al., 2016,
Bagan et al., 2017a, Bagan et al., 2017b, Leuween et al., 2017]

Graph queries evaluation (PODS13,ongoing)
[Bagan et al., 2013, Bagan et al., 2017c]

Learning graph queries (Data4U14, EDBT15, EDBT15a, TODS16)
[Bonifati et al., 2014, Bonifati et al., 2015b, Bonifati et al., 2015a,
Bonifati et al., 2016]
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Graph Queries: What is left to be done?



Open issues

Data engineering around RPQ (query optimization)
RPQ with data values

§ each node in the graph has a data value to test in query filters

Extension to more sophisticates graph models, such as the Property
Graph Model

https:
//github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
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Thanks for your attention.
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