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Abstract

Schema versioning provides a mechanism for handling
change in the structure of database systems and has been
investigated widely, both in the context of static and tem-
poral databases. With the growing interest in spatial and
spatio-temporal data as well as the mechanisms for holding
such data, the spatial context within which data is format-
ted also becomes an issue. This paper presents a gener-
alised model that accommodates schema versioning within
static, temporal, spatial and spatio-temporal relational and
object-oriented databases.

Keywords: Schema Evolution, Schema Versioning,
Spatio-Temporal Databases.

1. Introduction

The motivation for schema versioning (which can be re-
garded for some purposes as the application of temporal se-
mantics to the schema of a database) is to provide a mech-
anism to handle change in the real world in a data indepen-
dent fashion. For example, structural changes such as the
addition or deletion of attributes, the splitting or coalesc-
ing of relations, the addition or deletion of methods, etc.
should be achievable with the minimum impact to both the
data and to the applications. It also provides a mechanism
for versions of a database structure to facilitate alternative
structural representations to the same data. A previous sur-
vey of the field [22] provides a review of the area and a glos-
sary of temporal database concepts [11] gives the following
definitions:

Schema Evolution A database system supports
schema evolution if it permits modification of the

database schema without the loss of extant data.
No support for previous schemata is required.

Schema Versioning A database system accom-
modates schema versioning if it allows the query-
ing of all data, both retrospectively and prospec-
tively, through user-definable version interfaces.

The development of spatial and, more recently, spatio-
temporal databases [1, 9, 10, 16] is an important research
topic. Recent research has shown that there are similar
problems that could be considered as the spatial equiva-
lent to the problems experienced by time-related data and
changing schemata and for which temporal databases and
schema versioning provide some solutions. For example,
changes in database structure in time and the ability to ver-
sion schemata have their spatial analogue in the locations
that a given schema is to apply and the ability to apply dif-
ferent schemata according to where the data is to be appli-
cable. For example, the differences applicable across land
administration authorities (qv. [18]).

This paper therefore investigates the lessons learnt from
the theory and development of temporally oriented schema
versioning and examines whether these can be applied to
spatial and spatio-temporal databases. In doing so, it is ac-
knowledged that the spatial domain differs in several funda-
mental ways and solutions appropriate to handling time will
have to be carefully re-examined for the spatial context.

The paper is structured as follows. Section 2 reviews
temporal schema versioning and provides some background
to the model to be presented later. Section 3 then inves-
tigates the analogies between the temporal and spatial do-
mains and provides some motivation for spatial schema ver-
sioning. Section 4 proposes a generalised spatio-temporal
schema selection model and further discussion and research
directions are provided in Section 5.



2. Temporal Schema Versioning Revisited

Research into schema evolution and schema versioning
has been undertaken for a number of years and has resulted
in a number of useful changes to the way in which schema
changes are handled. We discuss here briefly three issues
(completed schemas, data conversion and query language
design) that relate to our research - however, a comprehen-
sive survey can be found in [22].

Firstly, the concepts of a completed schema was devel-
oped following the ideas of Clifford and Warren [6] for a
completed relation to enable all data, regardless of time
of validity, to be accessed. The concept of a completed
schema, which was introduced in [20] and discussed in
more detail in [23], is an overarching schema through which
all data, regardless of time of validity or format, to be
retrieved. The completed schema (discussed in more de-
tail later) is defined as the minimal superset of relevant
schemata capable of holding all associated data without
loss.

Secondly, three principal data conversion mechanisms
have been employed in the event of change. Firstly, data
is simply coerced to the new format as in [17]. Secondly,
a lazy conversion mechanism can be used in which data is
converted only when accessed [25]. Thirdly, data is never
physically converted and is always accessed through con-
version interfaces [4].

Finally, two query language extensions have been pro-
posed which accommodate schema evolution, SQL/SE [20]
and TSQL2 [21]. In the most significant of these - the tem-
poral query language TSQL2, an orthogonal schema-time
was added to the existing bi-temporal functionality to al-
low the specification of a designated schema (specified by
date) through which the data is retrieved. For example, a
TSQL2 statement such as that shown in Figure 1 speci-
fies that the Employee data held at 1-Mar-1999 for 1-Apr-
1999 is to be retrieved using the schema format extant as
at 15-Jan-1999. Schema-time defaulted to transaction-time
when not specified but could be used to effect resilience
in compiled programs using embedded TSQL2 by includ-
ing a SET SCHEMA DATE <compile-date> clause
instead. Note that the SET SCHEMA clause operates at
query level and heterogeneous schema-time queries cannot
be specified.

In [7], the single schema-time dimension (which was
effectively a transaction-schema-time) of TSQL2 was ex-
panded to support both transaction-schema-time and valid-
schema-time. This allows schemata to be both pre and post-
dated as well as specified in data retrieval. In fact, a number
of time dimensions can be identified although in some cases
it makes little sense to distinguish between some of them.

� Valid-time. The time the event occurred or the fact
was true in reality.

SET SCHEMA DATE ’1/15/1999’

SELECT Employee Name
FROM Employee
WHERE Employee Dept = ’CS’
AND VALID(Employee) OVERLAPS ’4/1/1999’
AND TRANSACTION(Employee) OVERLAPS ’3/1/1999’

Figure 1. TSQL2 Query with Schema-time ref-
erence

� Transaction-time. The time the data representing the
real world event or fact was recorded in the database.

� Transaction-schema-time. The time used to deter-
mine the structure and format of the data as stored in
the database. In [21] this is simply termed schema-
time and arguably provides the most useful versioning
ability.

� Valid-schema-time. The time used to determine the
structure of the real world. To date, this has not been
widely used as only data about the real world is actu-
ally manipulated. It is, nevertheless, the natural partner
to valid-time for data.

� Registration-schema-time. The time the current
schema was updated.

� Compile-time. The time the application programs
were compiled and thus the Transaction-schema-time
applicable to any static data structures used by the pro-
gram.

� Decision-time. The time the decision was taken to in-
voke the change, cause an event etc.

The most significant in terms of this paper are the first four
which can be represented simply as shown in Figure 2.
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Figure 2. Data and Structure Time Dimen-
sions

To augment the diagram given in [19], temporal schema
dimensions can be defined (as well as the two temporal data
dimensions) as shown in Figure 3.
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For example, consider the following five statements (D
is a data model, E is an event or fact, T�, T�, T� and T� are
times and S� and S� are versions of a database schema):

1. E happened at T� (valid-time)

2. E was recorded at T� (transaction-time)

3. The structure of D at T� (valid-schema-time) was S�

4. D was recorded at having structure S� at T�
(transaction-schema-time)

5. An application A is compiled (or has a transaction-
schema-time set) at T�. This application may access
data stored across multiple valid and transaction-times
in a single query.

6. S� was recorded at T� (registration-schema-time)

Various of these, notably transaction-schema-time, have
been discussed in the literature although in some cases,
some work has included aspects of multiple dimensions un-
der one heading. Indeed, the most common position in the
literature is to assume two or more dimensions of time are
identical.

3. Spatial Schema Versioning

It is commonly stated that we perceive a four dimen-
sional world, three dimensions of space and one of time.
However, the time dimension has a number of sensory and
physical attributes that make simple scaling of a one dimen-
sional solution to four dimensional space-time difficult1.

� Time is unidirectional and generally, in most systems
development, considered as linear. Thus the relational
concepts (before, during etc.) are easily understood

1It is often argued that one of the space dimensions should also be
treated differently because of gravity.

and accommodated. Space is bi-directional and, par-
ticularly in some geographic applications, commonly
non-linear.

� Both time and space are (or can be considered to be)
continuous2, however, it is often far more useful to
consider time as discrete and isomorphic with integers,
and a larger granularity is often selected. Space, on the
other hand, while a specific granularity is sometimes
adopted, is often considered as isomorphic with real
numbers.

� Common calendar systems, while not universally in
operation, are prevalent and a single way of express-
ing a point in time can usually be adopted for use in an
information system. Conversely, multiple sets of rules
governing space are not uncommon and frequently two
or more systems of spatial coordinates have to be han-
dled within one information system.

Notwithstanding these differences, some translations from
the temporal to the spatial domain can be made and, partic-
ularly with the development of spatio-temporal databases,
any possible reuse of accepted conventions would make
considerable sense.

Despite the volume of work in schema versioning, in-
cluding that relating to temporal database systems, schema
versioning has not been extended to spatial or spatio-
temporal models of data although some of the more gen-
eral research into schema integration is applicable. Spatial
and spatio-temporal databases are becoming a popular area
of research and the need for adequate schema versioning
problem is becoming evident for these systems also. For
example, spatial schema versioning would provide:

� a mechanism for different schemata to be applicable
according to location. This may be important for juris-
dictional, legal or collection method purposes;

� an indication of the rules under which data is collected
and therefore the manner in which they should be in-
terpreted. For example, data collected from one coun-
try may have been collected using a different protocol
from those collected from another.

� a method for providing local ownership and interpre-
tation of a centrally held database. For example, each
authority may provide the rules under which data col-
lected by its authority is interpreted.

For example, consider a spatial system of rural maps in
which region has a different categorisation method for each
type of entity depicted (towns, agricultural land, natural her-
itage listing, native title, airport noise contours, flood plains,

2Ignoring quantum space-time.



etc.), as well as perhaps different information provision re-
quirements (authority levels, copyright, freedom of infor-
mation acts, privacy laws, etc). Clearly, the task of combin-
ing the maps or analysing similar facets of the area needs a
global schema which needs to combine the elements of the
local schemata as determined either by the data itself or by
the location to which the data refers. It should be noted that
many of the aspects discussed in Section 3 have a spatial
analogue. For example, to rephrase the five temporal ex-
amples given, consider the following five statements (D is a
data model, E is an event, fact or object, L�, L� and L� are
locations and S is a database schema):

� E happened at L� (valid-location)

� E was recorded/observed at L� (transaction-location)

� The structure of D for L� is S (valid-schema-location)

� D was recorded at having the spatial structure S appli-
cable to location L� (transaction-schema-location)

� S was recorded at L� (registration-schema-location)

While some of these may not be useful dimensions, it is
clear that there is a spatial correspondence which would be
useful to investigate further. In this paper, valid-schema-
location and transaction-schema-location will be incorpo-
rated into a general model of schema selection for spatio-
temporal databases.

4. A Model for Spatio-Temporal Schema Selec-
tion

4.1. An Initial Discussion

In the proposed model schemata are associated (ie. la-
belled and referenced) with a given spatio-temporal region
(which defaults to “all time and space”) plus an optional
user-supplied label. When space and time are not supplied
the model degrades to a multiple static schema model and
when the optional user-supplied label is not supplied we de-
grade to schema versioning (in space-time). Furthermore,
if time only is supplied the model degrades to conventional
temporal schema versioning (à la [21]). As we would want,
the limit case is degradation to no versioning.

The model embraces the concept of a completed schema
introduced in [23] which is constructed as the minimal
schema capable of holding all associated data without loss.
More precisely, a completed relation scheme C of a rela-
tion scheme R contains the minimal union of all explicit at-
tributes which have been defined during the relevant spatio-
temporal span of the relation. Moreover, the domain of each
attribute inC is syntactically general enough to hold all data
stored under every version of R and the implicit primary key

of C is defined as the maximal set of key attributes for the
scheme over the relevant spatio-temporal span. Versions of
the schema can be seen to be views of C.
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Figure 4. Representation of schema version
pertinence considering space, time and label
coordinates

For example, in Figure 4 six schemata are defined (we
assume just one dimension for time for the purposes of the
exemple but this can be expanded to further dimensions).
Schema 1 was the first to be active and applied to trans-
actions applicable to Area A. Schema 2 took over at some
point and then schemata 3A and 3B which are both valid for
the same spatio-temporal region but which differ in some re-
spect (one maybe, for example, a test schema). Schemata 4
and 5 are valid for different regions (B and C resp. as shown
in the projection) and different times.

Schemata are constructed for queries are follows:

1. The S/T area over which the query ranges is deter-
mined.

2. This area is unioned with the S/T area defined by the
output schema (if not included in the area determined
in step 1.).

3. The completed schema is constructed for that area.
This provides a schema through which all data, includ-
ing any query criteria, can be viewed losslessly.

4. The query is executed using the compiled schema co-
ercing data to conform to the completed schema. (Note
that no information that would not have otherwise have
been lost anyway in the next step will be lost here).

5. The results are then converted according to the output
transformation rules to the output schema format as re-
quired.

Note that queries also have a bounding region. A query
that takes in spatial regions A and B and multiple schemata



temporally, say, times 5 through 7, would use for compi-
lation of the answer, the completed schema for schemata,
2, 3A, 3B and 4. The problem has thus becomes a general
problem of schema integration coupled with the accommo-
dation of temporal and spatial semantics.

4.2. Spatio-Temporal Schema Versioning with Par-
allel Versioning - A Model for Schema and
Data Selection

The model we propose here is generic enough to be ap-
plied to relational, object-oriented databases, and others.
Furthermore, it is a flexible model supporting seamless in-
tegration of temporal, spatial and parallel versioning facili-
ties. Indeed, all the “versioning dimensions” are treated in
a uniform manner, through a multi-dimensional coordinate
system. At the same time, by means of “defaults” on some
coordinates that imply special selection procedures, it can
be used for temporal or spatial or parallel versioning only,
or combinations (e.g. spatio-temporal only).

In our model, the database is composed of an inten-
tional part (meta-data, that is a set of schema versions
SV�� � � � � SVn) and an extensional part (object data, that
is a set of data repositories). Each schema version can be
structured as a schema definition part plus a “coordinate-
stamp”. The schema definition part includes all the data
structure definitions (e.g. a set of catalogue tables in a re-
lational database, a set of class definitions in an object-
oriented database), while the coordinate part defines the
multi-dimensional area representing the pertinence of the
schema version. In our model, it is made of three sets of
labels, spatial regions and temporal elements, respectively.
Notice that the temporal and spatial coordinates can also be
themselves multidimensional (e.g. valid-location xyz coor-
dinates and bitemporal time points). Hence, each schema
version SVi can be defined as follows:

SVi � �DefSVijLi� Si� Ti�

� �DefSVijfli�� � � � � lini
g� fsi�� � � � � simi

g�

fti�� � � � � tipig�

The coordinate system is then used for the schema version
selection by means of the selection function SV . When the
three coordinates are all supplied to represent a point in the
versioning space, a single schema version is always selected
(if it exists) as follows:

SV �l� s� t� � fSVijl � Li� s � Si� t � Tig

In general, more than one schema version can be used at the
same time. This happens, for instance, when some of the
coordinates are omitted or when a set of points rather than
a single point is specified. In this case, a schema-version
composition function (�) is needed to obtain a completed

schema. The composition function will typically be based
on union or intersection semantics (i.e. � becomes � or �,
respectively), depending on application requirements. For
instance, when the label coordinate is omitted, the selection
function can be defined as:

SV ��� s� t� �
M

l��Li

SV �l� s� t�

Notice that the result can be used as the complete schema
version set of a database only supporting spatio-temporal
schema versioning. In fact, its (two-variable) schema se-
lection function can be defined as SV ��s� t� � SV ��� s� t�.
Other coordinate combinations and single coordinate ver-
sionings can be dealt with in the same way.

On the other hand, intervals or set of coordinates can
also be used for schema construction. The most general
definition of the SV function is, thus:

SV �L� S� T � �
M

l�L�s�S�t�T

SV �l� s� t�

In fact, also the previous examples can be reconducted to
this definition.

However, the complete specification of the composition
function � is, in general, more complicated than that of a
simple union or intersection operation. It requires the ap-
plication of complex schema integration techniques. This
issue has already been investigated in the literature. An
overview of methods for schema integration in relational
and semantic databases can be found in [5]. In the object-
oriented field, although the problem is still an active re-
search area, solutions have been proposed [26] where se-
mantic and syntactic aspects are considered.

As fas as the extensional part of the database is con-
cerned, different data organizations can be adopted. The
organization we describe in the following (at logical level)
is aimed to efficiently support query processing. We or-
ganize the data repository as a common store augmented
with at most n differential stores, if n is the number of
schema versions (see Figure 5). The common store has a
logical structure corresponding to the definitions common
to all the schema versions. For instance, if two schema ver-
sions contain two attribute definitions with the same name
and storage-compatible types (e.g. integer and real num-
bers), just one attribute with the same name and the most
“generic” type is included in the common store structure.
Therefore, this structure can be defined as:

CommonS � fX j�i�Xcompatible with element in DefSVig

The purpose of maintaining the common store is to reduce,
as much as possible, data replication. The differential stores
are then organized with structure:

�Si � DefSVi n CommonS
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Figure 5. Organization of data with its corre-
sponding structure

The differential store is actually defined only if the above
definition is not empty, that is when DefSVi does not con-
tain only common parts. With this definitions, the data
which are instances of the SVi schema version can be re-
trieved from the common store and, if �Si is not empty,
from the the corresponding differential store. Notice that
the data retrieved from the common store may need a type
conversion (e.g. an attribute in SVi is an integer number
which has been stored as a real number in the common
store). A reference to a suitable conversion function can
be stored in the differential store in this case.

Such an organization allows an efficient data retrieval
when completed schemata are involved. Let us assume that
data belonging to schema versions SV� and SV� are re-
quired. In this case, if the completed schema of SV� and
SV� is computed with the intersection semantics, then the
corresponding data can be found in the common store only,
since the data stored in the differential stores that do not be-
long to both schema versions are discarded. On the other
hand, if the completed schema is computed with the union
semantics, the corresponding data can be found in the com-
mon store and in differential stores DS� and DS�.

In general, the steps to be followed in query processing
are those listed in Section 4. Once the L/S/T area for the
query has been individuated, the corresponding completed
schema QS can be constructed by means of the SV func-
tion as QS � SV �L� S� T �. Then data are accessed for
the query from the common store and from all the differen-
tial stores (corresponding to the schema versions involved
in the QS construction). Such data are retrieved and pro-
cessed according to the completed schemata, possibly after
conversion functions from the differential stores have been
applied.

5. Further Research

This paper discusses some initial ideas in what we be-
lieve is the first attempt to date to accommodate schema ver-
sioning in both multi-temporal and spatial databases. Re-
search is continuing to refine both the model as well as asso-
ciated issues such as query language support and concerns
relating to architectural issues (such as lazy and strict data
conversion) and speed of access, particularly for access to
data through the current schemata.

Our consultancy experience together with discussions
with other researchers has indicated, albeit anecdotally, that
spatial schema versioning would be a useful adjunct to
many systems. It would interesting to investigate this util-
ity further to discover the extent and nature to which spatial
schema versioning could be useful.
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